

PHYSICS, CHEMISTRY & BIOLOGY SAMPLE PAPER

GENERAL INSTRUCTIONS

	TEST PATTERN				
Time	Time Total No. of Subject/Question Type		Total Marks : 180		
	Questions	Segregation	- 760	Correct Negative	
120 Minutes	1-60	Physics (1-20) Chemistry (21-40) Biology (41-60)	Objective Question	3 Mark	1 Mark

- 1. A student has to write his/her answers in the OMR sheet by darkening the appropriate bubble with the help Of Ball pen only as the correct answer(s) of the question attempted.
- 2. Blank papers, clip boards, log tables, slide rule, calculators, mobile or any other electronic gadgets in any form is not allowed.
- 3. Write your Name & Roll No. in the space provided in the bottom of this booklet.
- 4. Before answering the paper, fill up the required details in the blank space provided in the OMR sheet.
- 5. In case of any dispute, the answer sheet available with the institute shall be final.
- 6. In case of tie the younger in age will get top rank

NAME OF THE CANDIDATE : I have read all the instructions and shall abide by them	ROLL NO. : I have verified the identity, name and roll number of the candidate.
Signature of the Candidate	Signature of the Invigilator
	orginatare of the intrigilator

THE RADIANT ACADEMY

Corporate Office: 7-8, Samta Nagar, Hiran Magri, Sector - 3, Udaipur (Rajasthan) - 313001

(D) 2 log_e 10

1. PHYSICS

Straight Objective

This section contains 20 questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

(C) $\frac{\log_e 10}{2}$

1. A coil having inductance L and resistance R is connected to a battery of emf ε at t = 0. If t₁ and t₂ are the times for 90% and 99% completion of the current growth in the circuit, then t₁/t₂ will be **[EMI_M]**

(A*) 1:2
(B) 2:1
Sol.
$$I = I_0 \left(1 - e^{-\frac{1}{r}} \right)$$

 $\frac{9}{10} I_0 = I_0 \left(1 - e^{-\frac{t_1}{r}} \right)$
 $\Rightarrow e^{-\frac{t_1}{r}} = \frac{1}{10}$
 $\Rightarrow e^{\frac{t_1}{r}} = 10$
 $\Rightarrow t_1 = r \ln 10$...(i)
 $and \frac{99}{100} I_0 = I_0 \left(1 - e^{-\frac{t_2}{r}} \right)$
 $\Rightarrow e^{-\frac{t_2}{r}} = \frac{1}{100}$

 \Rightarrow t₂ = r ln 100 = 2r ln 10 ...(2) from equations (1) and (2), we have

$$\Rightarrow \Rightarrow \frac{t_1}{t_2} = \frac{1}{2}$$

- 2. Consider a neutral conducting sphere, A positive point charge is placed outside the sphere. Then the net charge on the sphere is
 - (A) Negative and distributed uniformly over the surface of the sphere
 - (B) Negative appears only at the point on the sphere closest to the point charge
 - (C) Negative and distributed non-uniformly over the entire surface of the sphere
 - (D*) Zero
- **3.** A circuit consists of three identical lamps connected to a battery as shown in the figure. When the switch S is closed then the intensities of lamps A and B

potential across A and B after closing of S = V/2 As P \propto V^2

$$\therefore \frac{P_i}{P_f} = \frac{4}{9}$$
$$P_f = \frac{P_i \times 9}{4} = 2.25 P$$

4. A rod of length l rotates with a uniform angular velocity ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation. The potential difference between the two end of the rod is

(A*) Zero (B)
$$\frac{1}{2}\omega Bl^2$$
 (C) $B\omega l^2$ (D) $2B\omega l^2$

5. Unpolarised light of intensity 32 W m⁻² passes through three polarizers arranged such that the transmission axes of the first and the last polarizer are at right angles. If the intensity of emerging light is 3W m⁻², then what is the angle (in degree) between the transmission axes of the first two polarizeres? (Wave) M

Ans. 30.0

Sol. Since unpolarised light is passing through the first polarizer, hence the intensity of light after crossing the first polarizer will be

$$I_1 = \frac{1}{2}I_0 = 16Wm^{-2}$$

Let us assume that the angle between the transmission axis of the first and second polarizer is θ , then from Malus law we can find out the intensity of light after it crosses the second polarizer.

$$\begin{split} I_2 &= I_1 \cos^2 \theta = 16 \cos^2 \theta \\ \text{Similarly, the intensity of light after crossing the third polarizer is} \\ I_3 &= I_2 \cos^2 (90^\circ - \theta) = 16 \cos^2 \theta \sin^2 \theta \\ \Rightarrow I_3 &= 16 \cos^2 \theta \sin^2 \theta = 3 \\ \Rightarrow 4 \cos^2 \theta \sin^2 \theta = 3/4 \\ \Rightarrow \sin^2 (2\theta) &= 3/4 \\ \theta &= 30^\circ \end{split}$$

6. In given arrangement all resistors are of 1Ω . What is equivalent resistance between A & B.

By symmetry we can say that current through an will be equal to current through XB so current through XY will be zero.

Now lets say equivalent resistance between A and B is P.

$$R = \frac{2 \times (2 + R)}{2 + (2 + R)}$$

4R + R² = 4 + 2RR² + 2R - 4 = 0 $R = (\sqrt{5} - 1) \Omega$

7. In the circuit shown in the figure, the switch was kept in position -1 for a very long time and then at t = 0 it is shifted to position -2. The current in the circuit immediately after that is i = a/b A, then the value of a + b is **[EMI_M]**

Ans. 7

Sol.

The total flux, before and after the position change of the switch, remains the same $L_1i_1 = L_2i_2$ $L_1 = 5H$, $i_1 = 4$ A and $L_2 = 15$ H $5 \times 4 = 15 \times i$ $\Rightarrow i = \frac{4}{3} = \frac{a}{b}$

$$\Rightarrow$$
 a + b = 7

- 8. Two concentric coils of 10 turns each are placed in the same plane. Their radii are 20 cm and 40 cm and carry 0.2 A and 0.3 A current respectively in opposite directions. The magnetic induction (in tesla) at the centre is
 [EMF_M]
- (A) $3/4 \mu_0$ (B*) $5/4 \mu_0$ (C) $7/4 \mu_0$ (D) $9/4 \mu_0$ Sol. Two coils carry current in opposite directions, hence net magnetic field at centre will be difference of the two field.

ie, $B_{net} = \frac{\mu_0}{4\pi} \cdot 2\pi N \left[\frac{i_1}{r_1} - \frac{i_2}{r_2} \right]$ = $\frac{10\mu_0}{2} \left[\frac{0.2}{0.2} - \frac{0.3}{0.4} \right]$ = $\frac{5}{4}\mu_0$

- In the spectrum of the hydrogen atom, the ratio of the wavelengths of the longest wavelength in Lyman series to the longest wavelength in the Balmer series is [Modern Physics_M]
 (A*) 5/27
 (B) 1/93
 (C) 4/9
 (D) 3/2
- **Sol.** When an electron jumps down from any higher energy level to the first energy level, then the emitted lines form the Lyman series

 $\frac{1}{\lambda_L} R \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$, where R is the Rydberg constant.

Similarly, when an electron jumps down from any higher energy level to the second energy level, then the emitted lines form the Balmer series

$$\frac{1}{\lambda_B} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$

For maximum wavelength, the energy gap should be the smallest

$$n = 2, \frac{1}{\lambda_L} = R\left(1 - \frac{1}{2^2}\right) = R\left(1 - \frac{1}{4}\right) = \frac{3R}{4}$$

$$n = 3, \frac{1}{\lambda_B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5R}{36}$$
$$\frac{\lambda_L}{\lambda_B} = \frac{5}{27}$$

10. Three large parallel plane sheet of charge have uniform surface charge densities as shown in the figure. What is the electric field at P

11. A right-angled isosceles prism ABC is immersed in a liquid of refractive index μ . Incident and emergent rays are parallel as shown. The minimum value of refractive index of prism is P μ then find out P².

- 12. A man moves 2 m towards a plane mirror and the mirror moves perpendicular to itself by 3 m towards the man. Then the distance(in m) by which his image moves w.r.t ground is
 - (A) 6 (B*) 8 (C) 10 (D) 4

Ans 08.0

Sol. Use
$$\Delta X_{mirror} = \frac{\Delta X_{object} + \Delta X_{image}}{2}$$
, and $\Delta X_{mirror} = 3$, $\Delta X_{object} = -2$, we get $\Delta X_{image} = 8$

13. A ray incident at a point at an angle of incidence θ enters into a glass sphere placed in air which is reflected and refracted at the farther surface of the sphere as shown in the figure. The angle between reflected and refracted rays at this surface is 90°. If refractive index of the sphere is, the $\sqrt{3}$ angle θ is :

Sol.

I. $ε_1 = 300 α$ $-ε_2 + ε_1 = 100 α$

where, α is the potential gradient

$$\therefore \ \frac{\varepsilon_2}{\varepsilon_1} = \frac{2}{3}.$$

15. The potential at point A, in the circuit, is (Point N is grounded, i.e. the potential of that point is zero.)

.....(i)

.....(ii)

[Capacitor_M]

(B*) 7.5 V

(A) 10 V

(C) 5 V

(D) 2.5 V

Sol.

$$V_{A} - V_{N} = \frac{10 \times C}{C + \frac{C}{3}} = \frac{30C}{4C} = 7.5$$

$$V_{A} - 0 = 7.5$$

$$V_{A} = 7.5 \text{ V}$$

16. A travelling nucleus A having a de-Broglie wavelength λ_A spontaneously splits into two nuclei B and C of equal masses. After the split, B travels in the same direction while C travels in the opposite direction with a speed equal to half of B. The values of the de-Broglie wavelengths λ_B and λ_C will be

(Modern Physics) E
(A)
$$\lambda_A$$
, $2\lambda_A$ (B*) $\frac{\lambda_A}{2}$, λ_A (C) λ_A , $\frac{\lambda_A}{2}$ (D) $2\lambda_A$, λ_A
Sol. A \rightarrow u $\leftarrow V/2$ C B \rightarrow v
2m m m m m
Applying conservation of linear momentum
2mu = mu - mu/2
So,
 $\lambda_A = \frac{h}{2mu}\lambda B = \frac{h}{mv} = \frac{\lambda_A}{2}\lambda_C = \frac{h}{m\frac{V}{2}} = \lambda_A$
17. The probability that a particular nucleus of ³⁸Cl will undergo beta decay in any time interval of 4s is
[T_{1/2} for ³⁸Cl is 37.2 min] (Nuclear Physics) E
(A) 3.1 x 10⁻⁴ (B) 6.2 x 10⁻⁴ (C*) 12.4 x 10⁻⁴ (D) 24.8 x 10⁻⁴
Sol. Probability for a particular nucleus to decay in any time interval dt is
 $\frac{dN}{N} = \lambda dt$
 $= \frac{0.693}{T_{1/2}} \times 4$
 $= 12.4 x 10^{-4}$
18. Unpolarizzed light of intensity 32 W m⁻² passes through three polarizers arranged such that the transmission axes of the first and the last polarizer are at right angles. If the intensity of emerging light is 3W m⁻², then what is the angle (in degree) between the transmission axes of the first two polarizeres? (Wave) M

Sol. Since unpolarized light is passing through the first polarizer, hence the intensity of light after crossing the first polarizer will be

$$I_1 = \frac{1}{2}I_0 = 16Wm^{-2}$$

Let us assume that the angle between the transmission axis of the first and second polarizer is θ , then from Malus law we can find out the intensity of light after it crosses the second polarizer.

 $I_2 = I_1 \cos^2 \theta = 16 \cos^2 \theta$

Similarly, the intensity of light after crossing the third polarizer is
$$\begin{split} I_3 &= I_2 \cos^2 (90^\circ - \theta) = 16 \cos^2 \theta \sin^2 \theta \\ \Rightarrow I_3 &= 16 \cos^2 \theta \sin^2 \theta = 3 \\ \Rightarrow 4 \cos^2 \theta \sin^2 \theta = 3/4 \end{split}$$

$$\Rightarrow \sin^2(2\theta) = 3/4$$

 $\theta = 30^{\circ}$

19. Find the electric flux (in S.I. unit) through the rectangular plate abcd of length $\lambda = 2m$, width L and whose centre is at a distance OP = $x_0 = L/2$ from an infinite line of charge with linear charge density $\lambda = \frac{1}{36\pi} \times 10^{-9} \text{ Cm}^{-1}$. Consider that the plane of the frame is perpendicular to line OP.

[Electrostatics_M]

Sol. 0.50

If we arrange three more rectangular plates (similar to the one which is given) around the wire, then we get a rectangular box open at both ends. We bring two more plates and use them to close this rectangular box. We can see from the figure that we have a symmetric system for which the total flux is

$$\phi = \frac{\lambda \ell}{\varepsilon_0}$$

Hence the flux through one plate is

$$\phi = \frac{\lambda \ell}{4\epsilon_0} = 0.5$$

- A coil of inductive reactance 31Ω has a resistance of 8Ω. It is placed in series with a condenser of capacitive reactance 25 Ω. The combination is connected to an ac source of 110 V. The power factor of the circuit is [AC_M]
 (A) 0.33
 (B) 0.56
 (C) 0.64
 (D*) 0.80
- (A) 0.33 (B) 0.56 **Sol.** $X_L = 31\Omega, X_C = 25\Omega, R = 8\Omega$ Impedance of series LCR is

$$Z = \sqrt{(R^2) + (X_L - X_C)^2}$$
$$= \sqrt{(8)^2 + (31 - 25)^2} = \sqrt{64 + 36} = 10\Omega$$

Power factor, $\cos\phi = R/Z = 8/10 = 0.8$

2. CHEMISTRY

Straight Objective Type

This section contains 20 questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

9

STAR (STUDENT TALENT ACADEMIC REWARD)

Sol. Sol. (A) (B)

 \therefore In basic medium the opening of epoxide is S_N2 type. So, nucleophile CH_3 attack less hindered 'C' of epoxide

29. In the given reaction

(*A) HOOC
$$-CH_2 - CH_2 - CH_3$$

(B) $CH_3 - CH_2 - CH_2 - CH_2 - COOH$
(C) $HO - CH_2 - CH_2 - CH_2 - COOH$
(D) $CH_3 - CH_2 - CH_2 - COOH$

Sol. Hydrolysis of cyclic ester will produce carboxylic acid

ФH

30. In the given reaction

Solutions.

When nonvolatile solute is added in volatile solvent \rightarrow vapour pressure $\;$ of solvent decreases and B.P. increases

 $T_{b_3} > T_{b_2} > T_{b_1}$

 T_{b} = boiling point of solution

As vapour pressure decrease \Rightarrow B.P. of solution increases So, III have minimum V.P. = maximum B.P. = Elevation in B.P.

32. If any solute 'A' dimerises in water at 1 atm pressure and the boiling point of this solution is 100.52°C. If 2 moles of A is added to 1 kg of water and kb for water is 0.52°C/molal, calculate the percentage association of A

(A) 50% (B) 30% (C) 25% (*D) 100%
Sol.

$$t = 0$$
 1 0
 $t = t_1$ 1 - α $\frac{\alpha}{2}$
 $i = 1 - \alpha + \frac{\alpha}{2} = 1 - \frac{\alpha}{2}$
 $\Delta T_b = iK_b \times m$
 $0.52 = \left(1 - \frac{\alpha}{2}\right)(0.52 \times 2)$
 $1 - \frac{\alpha}{2} = \frac{1}{2}$
 $\frac{\alpha}{2} = 1 - \frac{1}{2}; \qquad \frac{\alpha}{2} = \frac{1}{2}$
 $\alpha = 1 \text{ or } (100\%)$

33. Substance A tetramerises in water to the extent of 80%. A solution of 2.5 of A in 100 g of water lowers the freezing point by 0.3° C. The molar mass of A is $(K_{f} \text{ for water} = 1.86 \text{ K kg mol}^{-1})$

Sol.

(A) 122 (B) 31 (C) 244 (*D) 62
4A (*D) 62
4A (*D) 62

$$t = 0$$
 1 0
 $t = t_1$ 1 - α $\frac{\alpha}{4}$
 $\alpha = \frac{80}{100} = 0.8$
 $i = 1 - \alpha + \frac{\alpha}{4}$
 $\Rightarrow 1 - 0.8 + \frac{0.8}{4}$
 $\Delta T_f = i(K_f \times m)$
 $0.3 = 0.4 \left[1.86 \times \frac{2.5 \times 1000}{M \times 100} \right]$
M = 62g

Standard cell voltage for the cell Pb/Pb²⁺||Sn²⁺/Sn is -0.01V. If the cell is to exhibit $E_{cell} = 0$ then the 34. value of log [Sn²⁺] / [Pb²⁺] should be (*A) 0.33 (B) 0.5 (C) 1.5 (D) -0.5

$$E = E^{\circ} + \frac{0.059}{2} \log \frac{[Sn^{+2}]}{[Pb^{+2}]}$$
$$0 = -0.01 + \frac{0.059}{2} \log \frac{[Sn^{+2}]}{[Pb^{+2}]}$$
$$0.01 = \frac{0.059}{2} \log \frac{[Sn^{+2}]}{[Pb^{+2}]}$$
$$\log \frac{[Sn^{+2}]}{[Pb^{+2}]} \Rightarrow \frac{0.01 \times 2}{0.059} \Rightarrow 0.33$$

- 35. The following facts are available $2A^{-} + B_2 \rightarrow 2B^{-} + A_2$ $2C^- + B_2 \rightarrow No reaction$ $2D^- + A_2 \rightarrow 2A^- + D_2$ Which of the following statement is correct? (A) $\dot{\mathsf{E}_{C/C_2}} > \dot{\mathsf{E}_{B/B_2}} > \dot{\mathsf{E}_{A/A_2}} > \dot{\mathsf{E}_{D/D_2}}$
 - (*B) $E_{C/C_2}^{\circ} < E_{B/B_2}^{\circ} < E_{A/A_2}^{\circ} < E_{D/D_2}^{\circ}$
 - (C) $E_{C/C_2}^{\circ} < E_{B/B_2}^{\circ} > E_{A/A_2}^{\circ} > E_{D/D_2}^{\circ}$
 - (D) Can't predict
- According to given reactions Sol.
 - B₂ can oxidise A⁻, and cannot oxidise C⁻
 - A₂ can oxidise D⁻
 - So reduction potential C > B > A > D
 - (C) can reduced but not oxidised by B₂ So, oxidation potential $\rightarrow C_2 < B_2 < A_2 < D_2$
- (A) reduced by D
- The specific conductance of a 0.1 N KCl solution at 23°C is 0.012 ohm⁻¹ cm⁻¹. The resistance of cell 36. containing the solution at same temperature was found to be 55 ohm. The cell constant will be (A) 0.142 cm⁻¹ (*B) 0.66 cm (C) 0.918 cm⁻¹ (D) 0.12 cm⁻¹
- k = cell constant x $\frac{1}{R}$ Sol.

(A) | & ||

 \Rightarrow cell constant = R x k = 0.012 x 55 = 0.66 cm⁻¹

Consider the following statements: 37. I. More easily liquefiable gases adsorb easily

II. Silica gels are used to remove moisture III. $x/m = K. p^{1/n}; (n > 1)$

Choose the correct statement(s) (B) II & III

(C) | & III

(*D) I, II & III

- Example of anionic detergent is 38.
 - (A) Sodium lauryl sulphate
 - (B) Cetyltrimethyl ammonium bromide
 - (C) Sodium dodecylbenzenesulphonate
 - (*D) Both (A) and (C)
- Cetyltrimethyl ammonium bromide is cationic detergent. Sol.
- 39. Principal emulsifying agents for oil-water emulsions is (A) Long chain alcohols (B) Lampblack (C) Heavy metal salts of fatty acids (*D) Natural and synthetic soaps The principal emulsifying agents for O/W emulsions are proteins, gums, natural and synthetic Sol. soaps.

40. Choose the correct matching in the following-

[ORM-I (Attacking Reagent)_M]

	l.	Ш	ш	IV	5
(A)	H ₂ O	[⊕] NH₄	C ₂ H ₅ OH	Н ^е	All are Nucleophile.
(B)	H®	SO3	:CCI2	NO₂	All are Electrophile.
(C)	СН3-СН-СН3 ОН	C ₂ H ₅ OH	0 H-C-N CH3	О СН ₃ –S–СН ₃	All are Polar protic solvent.
(D)	СH ₃ -CH-CH ₃ ОСH ₂ CH ₃	CH3COCH3	0 H-C-N CH3 CH3	H ₂ O	All are Polar aprotic solvent.

Ans. (B)

3. BIOLOGY

Straight Objective Type

This section contains 20 questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

41. Select the wrong pair for the symbols of pedigree analysis.

	(1) 5	_	Five unaffecte	d offsprings			
	(2)	—	Consanguined	ous marriage			
	(3*)	_	Sex specified				
			Descate with a				
	(4)	—	Parents with n	hale child affected with d	Isease		
42.	How many linkage gro	oups are	found in man				
	(1) 7	(2) 10)	(3) 23	(4*) 24		
43.	Placentra acts as a/ar	n:	15				
	(1) Ultrafilter	(2) En	docrine gland	(3*) Both (1) and (2)	(4) None of above		
44	Which of the following is	sincorrec	t about parturitio	on in pregnant female?			
	(1) Parturition is induce	ed by a co	omplex	in in prognant remaic :			
	neuroendocrine mechanism.						
	(2*) At time of par	turition p	rogesterone				
	estrogen ratio is increased.						
	(3) Parturition is due to	release	of oxytocin				
	from maternal pituit	ary.					
	(4) Oxytocin acts on ut	erine my	ometrium and				

cause contraction of smooth muscles.

STAR (S	TUDENT TALENT ACADEMIC	REWARD)	TAR	BIGGEST TALENT HUNT EXAM	
45	Cu ⁺² ions released from	copper releasing Intra L	Jterine Devices (IUDs)		
	(1) Increase phagocytos	sis of sperms	(2*) Suppress	sperm motility	
	(3) Prevent ovulation		(4) Make uteru	s unsuitable for implantation	
46.	Codon with dual function	n is			
	(1) UGA	(2) UUU	(3*) AUG	(4) AAA	
47.	Methyl guanosine tripho	sphate is added at 5' en	d of hn RNA in a proces	ss of	
	(1) Tailing	(2) Splicing	(3*) Capping	(4) None of the above	
48.	In a nucleosome, the his	stone core is made of :			
	$(1^*) 2(H_{2A} + H_{2B} + H_3 + H_3)$	H ₄)	(2) $2(H_1 + H_2 + H_3 + H_4)$		
	(3) $4(H_{2A} + H_{2B} + H_3 + H_3)$	4)	$(4) 8(H_{2A} + H_{2B} + H_3 +$	H ₄)	
49.	(1*) Absence of one point	tatement is incorrect	awa'a avadromo		
	(1) Absence of one sex (2) Colourblindness occ	urs due to recessive der	ne on X-chromosome		
	(3) Experimental verific	ation of the chromosoma	al theory of inheritance v	was given by Thomas Hunt Morgan	
	(4) Mendel chose 2 flow	ver based characters for	his experiments in pea	plant	
50.	If zona pellucida is dige	ested during morula stag	e in fallopian tube then	which of the following condition is	
	likely to happen?				
	(1*) It leads to ectopic p	regnancy	(2) Mobility is affected		
	(3) Cleavage is affected		(4) Corona radiata beh	aves like zona pellucida	
51	Match the diagona in an			ovention (treatment) in column II	
51.	Column I	Column II	ate items (pathogen / pre		
	(a) Amoebiasis	(i) <i>Treponema</i>	pallidum		
	(b) Diphtheria	(ii) Use only ste	rilized		
		food and water			
	(c) Cholera	(iii) DPT Vaccin	e		
	(d) Syphilis	(iv) Use oral rel	nydration		
	(1) $a_{(II)}, b_{(I)}, c_{(III)}, d_{(IV)}$	Minds	$(2^{\circ}) a_{(II)}, b_{(III)}, c_{(IV)}, c_{(I$	J-(I) /:::)	
	(0) a-(1), b-(1), c-(11), a-(1)	ung ing in	(+) a-(ii), b-(iv),c-(i),a-(, <i>)</i>	
52.	Vectors for dengue and	Chikungunya are –			
	(1) Aedes and culex	(2) Anopheles and Aec	les (3) Culex and anoph	neles (4*) Aedes and Aedes	
53.	Mitochondria and chloro	plasts are semi-autonor	nous as they possess		
	(1) DNA	(2) DNA + RNA	(3*) DNA + RNA + ribo	osomes (4) Proteins	
54.	9+2 organisation is pres	ent in		(Cell)	
	(1) Flagella of bacteria	(2*) Fla	agella and cilia of eukar	yotic cell	
	(3) Basal body	(4) Ce	ntriole and basal body	·	

BIGGEST TALENT HUNT EXAM

(4) Starc

(Photosynthesis)

(Photosynthesis)

- **55.** During photosynthesis, oxygen in carbohydrates come from : (1) Atmosphere $(2^*) CO_2$ (3) H₂O
- **56.** In photosynthesis, light reaction occurs in :

(3) Stroma, grana and granallamellae

(1) Stroma only

- (2) Stroma and grana
- (4*) Stroma lamellae and grana
- 57. Which of the following structures or regions is *incorrectly* paired with its function?

(1)	Medulla oblongata:	:	controls respiration and cardiovascular reflexes.
(2)	Corpus callosum	:	band of fibers connecting left and right cerebral hemispheres.
(3)	Hypothalamus	:	production of releasing hormones and regulation of temperature, hunger and thirst.
(4*)	Limbic system	:	consists of fibre tracts that interconnect different regions of brain; controls movement.

- **58.** Myelin sheath is produced by
 - (1*) Schwann cell and Oligodendrocytes
 - (3) Oligodendrocytes and Osteoclasts
- (2) Astrocytes and Schwann cells
- (4) Osteoclasts and Astrocytes

(2*) Subsidiary cells

(4) Lenticels

- 59. Specialised epidermal cells surrounding the guard cells are called :-
 - (1) Complementary cells
 - (3) Bulliform cells
- **60.** The water potential of pure water is : (1) Less than zero
 - (3) More than one

(2) More than zero but less than one (4*) Zero

